
1

Paper 031-2009

Building Interactive Web Applications using Stored Processes

Philip Mason, Wood Street Consultants, Wallingford, Oxfordshire, U.K.

ABSTRACT

Ten years ago, I was building applications using SAS/AF using a client/server architecture. Since the coming of SAS
9 and the spread of the web I have seen the tools arrive that let me build the same functionality that was available in
SAS/AF but using stored processes used through a web browser. This paper describes what I have learned during 4
years of building Rich Internet Applications with SAS 9 stored processes.

INTRODUCTION

In this paper I will outline some of the most useful things that I have learnt while I have been building applications with
SAS 9.1. Prior to this I had built SAS applications using SAS/AF, which was very powerful and flexible. Moving to
SAS 9.1 and with the advent of Stored Processes and the Stored Process Web Application it has opened up the
possibility to easily create applications that run through a web browser.

BUILDING A WEB APPLICATION

In this paper this is what I mean by an “Interactive Web Application”:

An application that is used through a web browser w hich lets the user make choices, runs SAS code to
produce results and delivers them back via the web browser.

For a long time SAS/AF (since version 6 or earlier) was the SAS product that most people would use to produce
applications. It is still used by a lot of people and it had many advantages including:

• Interactive development environment, making development quick and easy
• Very powerful and flexible functionality

SAS then delivered another product with version 7/8 which enabled applications to be developed for the web –
SAS/Intrnet. This was a CGI based tool, which enabled us to interact with SAS from a web page and return results to
a web browser.

With SAS 9 came the new metadata based architecture, including the Stored Process. SAS delivered a Stored
Process Web Application with this release which meant that we could run stored processes from a web page and
return results to it. In many ways this was very similar to SAS/Intrnet, but it was designed to be much more flexible
and powerful. By using this web application and linking together a bunch of stored processes we can produce an
Interactive Web Application. This is what we will focus on in this paper.

One way to build a web app – server side includes
One way to produce a web based application is to produce a stored process which takes a kind of pseudo
code in. This pseudo code would define what a screen would appear as and what it is composed of.
For example, we could have a selection box that would let us choose one option and was filled by getting
values for a variable from a dataset, then this could all be specified in a piece of pseudo code.
Example

%select_box(dataset, variable, choice, 1)
The stored process would then call the macro which carries out the directive in and construct HTML to
produce that component. This means that to produce a page you just need to write a list of pseudo code
directives. By building up a library of macros to interpret different pseudo code functions, you can extend
the functionality a great deal.

Beyond the BasicsSAS Global Forum 2009

2

There is a book by Don Henderson called “Building Web Applications with SAS/Intrnet” that describes how to do this
in great detail. Highly recommended!

Another way to build an application
This is the method I have been using recently. It makes use of the Stored Process Web Application to run stored
processes through the web browser. One key technique is that when a stored process needs to prompt a user for
input then it is written so that it can be run in two parts. The first part will build a web page which prompts the user for
the required input and then calls the same stored process, passing in the selections that the user made. When the
stored process is called the second time it can detect that it has been called with various parameters passed in, and it
then runs to produce the output that is required. This basic idea was described in a SAS usage note and then
developed some more by myself.1

Example pseudo code
If expected parameters are passed in then
 Produce report
Else
 Produce web page

One key part of this technique is that a stored process needs to determine how to call itself. This can be done by
constructing a URL from automatic macro variables that are provided to the stored process. The following code is
taken from a stored process and it constructs a URL which will call that stored process, as well as passing some
extra parameters to it. It makes use of the automatic macro variables: _program, _srvname, _srvport and _url. It also
passes two parameters in: graph and x, whose values are &type and &x.

%let rev=%sysfunc(reverse(%superq(_program))) ;
%let index=%sysfunc(index(%superq(rev),/)) ;
%let rev2=%substr(%superq(rev),&index) ;
%let firstPart=%sysfunc(reverse(&rev2)) ;
%let html=http://&_srvname.:&_srvport.&_url.?_progr am=&_program.
%nrstr(&graph)=&type.%nrstr(&x)=&x ;

Once we have this URL built we can take it and put into an HTML form, which can then be used to prompt the user
for various parameters and pass them to the web app using the URL. The URL can be put into the action field in the
HTML form. When the submit button of the form is pressed then the action field is used to start building the actual
URL. Other fields on the form are added to the end of the URL. These are then available to the stored process as
macro variables.

HTML, RTF or PDF?
Another thing to consider when building your application is what you want your output to be produced as. You will
most likely use a web browser for interacting with the user, but then reports that are produced may be required in
HTML, RTF, PDF, EXCEL or other formats. Fortunately the web app makes this easy. You merely specify a value for
_odsdest prior to calling the stpbegin macro, and it will then set the ODS options appropriately for the type of output
you require. Since parameters passed in via the URL to the web app appear as macro variables, you can therefore
pass a parameter on the URL called _odsdest, which will then set your output appropriately. That means that you can
prompt the user for the type of output in your HTML and then pass that value through.

Want to do something tricky?
If you are building a nice interactive web page in HTML then it is likely you will be wanting to take control over exactly
what HTML is produced. If you don’t, then you can get a lovely HTML page produced for you by using the wizard in
Enterprise Guide 4.1. You can define a stored process there along with various parameters and values they can
have. EG then produces a web page to prompt you for those parameters and then call the stored process. Very easy.
However should you want to do your own web page, there are other techniques.

You can use a web development IDE (Interactive Development Environment) to produce your web pages. This is
reasonably easy, but reduces flexibility a little. You will need to code in to the page the URL to call your stored
process for instance (and I should say I am not an expert web developer and no doubt there are 50 ways of
automating this that I am not aware of). But once your URL is encoded you can use the full power of the IDE to build
all the other bits and pieces of your page (or pages). I would recommend Aptana Studio for this, which is free and
powerful.

1 Usage Note 19475: Example: Creating dynamic parameter values for a stored process

Beyond the BasicsSAS Global Forum 2009

3

The method I mostly use is to have SAS produce my web page for me. The key to this is knowing that you can write
raw HTML code to the web page that the web app is creating from your stored process as it runs. This is done by
writing the HTML code to the fileref called _webout . One trap to avoid is that you cant write to _webout unless it is
free. It won’t be free if %stpbegin has run, since it will be being used by ODS. So I usually only use %stpbegin when I
want to use ODS to produce some kind of report, and then I turn it off with %stpend when I am finished. If you
produce a stored process in Enterprise Guide then SAS helpfully puts and %stpbegin at the start and an %stpend at
the end. I usually then remove these so I can just put them where I want them to be. That means that I can drop into
a data step anytime and write some HTML or JavaScript to do something. For example:

Data _null_ ;
 File _webout ;
 Put ‘<h1>Make your choices and press submit to co ntinue</h1>’ ;
Run ;

Another very important thing to point out is that if you use %stpbegin to start writing to HTML, then use %stpend to
stop so you can write some custom HTML, then the HTML produced by default is quite interesting and verbose. It will
start with an <html> tag for instance, and end with an </html> tag. This is fine if you are just producing one report in a
single lump. However if you want to nip in and out of writing custom HTML and have SAS produce reports around
what you do, then I have found an incredibly useful undocumented result type. You will usually be using a result type
of stream which streams the results to your web browser. However if you use a result type of streamfragment, then
SAS will just produce the HTML for the reports and none of the extra tags required. That gives us much more control
over what goes on in our HTML. To use this you just need to set the macro variable _result=streamfragment prior to
running the stpbegin macro.

A collection of useful macros
Any SAS application should have a nice collection of useful macros. If you are producing a web application then you
will find yourself producing some macros which not only deal with the SAS environment, but also interact with HTML
and JavaScript code. For example, the following macro will write a piece of JavaScript code to the HTML file being
generated. That JavaScript will place a message into the status area at the bottom of the web page. Using this macro
you can update the user on things that are happening in the background – for example “now generating graph 27 of
50”.

%macro message_js(text) ;
 %if %symexist(_odsdest) %then
 %if %upcase(&_odsdest)=RTF or
 %upcase(&_odsdest)=PDF %then
 %return ;

 data _null_ ;
 file _webout ;
 put '<script type="text/JavaScript">' ;
 put "window.status = ""&text"";" ;
 put '</script>' ;
 run ;
%mend message_js ;

I have many other macros for use with web development which do things such as:

• Produce selection lists of various kinds based on variables in a dataset
• Produce messages of various types in HTML code
• Write JavaScript functions to HTML
• Read and write values of HTML cookies
• Produce pop-up dialogs
• And many more

I also have developed a range of macros which produce nice HTML reports. These could be used in other places, but
each of them have been enhanced to be highly interactive by supporting tool tips, drill down and special links to other
functionality. For example, some of these include:

• Heatmap which shows a graduated shading of colors combined with traffic lighting for exceeded limits
• Listing which has bars that indicate magnitude of values, along with colors that show traffic lighting

Beyond the BasicsSAS Global Forum 2009

4

• Gantt charts, which use an innovative technique using Proc Gchart

I like to share code, so if you are interested in any of these then please contact me and I can send you code.

STORED PROCESS WEB APPLICATION

In SAS 9 we have the SAS Stored Process Web Application, which enables Stored Processes to be run from a web
browser and then will stream the results back to the browser. This is the single most useful new facility that SAS have
provided in the last 5 years – in my opinion. This is because it means that SAS code can be run from almost any
place. For example, I can go into Microsoft EXCEL and enter a URL which runs the web application and produces a
table – that table will then be imported into EXCEL automatically. Another example, at a previous client of mine we
built a java application which simply constructed URLs to run the web application and then read the results that were
streamed back.

USING JAVASCRIPT FRAMEWORKS

There are many JavaScript frameworks (or libraries) available on the internet, mostly which are free. They provide a
collection of pre-written JavaScript controls which allow us to build web applications much quicker than we could
otherwise do so. We also need much less knowledge to make use of these frameworks than we would to write the
functionality from scratch. Common frameworks are: Prototype, script.aculo.us, jQuery, Ext and Dojo Toolkit. There
are even libraries available from Microsoft and Yahoo!. You can Google these and find out all about them. You will
find that each offer a similar but different range of controls to do all manner of things. For those readers who are
familiar with SAS/AF you can think of these libraries as adding SAS/AF functionality for web development.

The one that we have most recently chosen to use is called ext-js, and you can find it at http://extjs.com/.

This framework has many features available that make
building applications much easier. One of the key things
that I have used is a JavaScript layout. It lets me design
a screen where I can have different parts of the screen
used for different things. In the screen shot to the left you
can see how we have two areas on the left, including the
top one in which items can be expanded and collapsed.
On the right we have tabs, and within tabs we have other
tabs with various content.

All of this kind of layout can be used with your SAS
application. We have a SAS macro that builds the overall
layout with various elements we want defined. Then we
populate various parts of the framework by calling stored

processes within them. For instance, the area in the screen shot about called “north” could contain the output of a
stored process. That might let you make some selections and submit them, which could then run a stored process in
the area called “west” that would display the HTML generated. This makes for a very powerful and flexible layout
which can produce all kinds of applications.

Building interactivity using JavaScript

Popup windows
Sometimes you will want a secondary window to pop up so that you can make some selections before going back to
a main window and applying those selections. This can be done from JavaScript by using window.open. The
following line of code shows how we write some JavaScript which opens a stored process in a new window which is
small like a popup window.

Data _null_ ;
 File _webout ;
 put "<a href='#'
onClick='window.open(""http://&_srvname:&_srvport/S ASStoredProcess/do?_program=SBIP
%3A%2F%2FFoundation%2F&env.%2Fbis%2Fmedmon%2Flb_box plotgroup%28StoredProcess%29"","
;
 put """Menu"",""menubar=no,width=430,height=360,t oolbar=no"") ;'>" ;
 run ;

Beyond the BasicsSAS Global Forum 2009

5

Providing status updates
At the bottom left of a web page there is a status area. You can write to this area using JavaScript –
window.status=”This is a message”. There was a macro that used this on a prior page.

Having multiple buttons on a screen to do different things
I have a filter builder which builds up a complex form for all the user selections. One of the nice features of this is the
ability to click on a plus or minus icon to add a new filter line or remove one. These buttons are able to do different
things by using the onClick attribute to specify some JavaScript to run when they are clicked on. The JavaScript
goes and updates a hidden text fields to indicate if the plus or minus was clicked on, and which line it was on. The
icon is also a submit button and so the form is submitted with the modified fields so that the stored process can then
act on that information.

USING HTML

Linking different stored processes
Another thing that you will often want to do in a web app, is to run one stored process and then have it automatically
run another. The best method that I have discovered for doing this is to use some custom HTML. You can use the
onLoad method on the body tag in an HTML page which will run some JavaScript after the current web page has
fully loaded. This is exactly what we need to link stored processes. An example of this is in an application I have
which links several stored processes together. This first produces a web page to choose a study and the user clicks
on submit – that runs another which saves the selection to a parameter file – that runs another which loads a list of
subjects in the study – which runs another that loads a list of favorites for that study – and so on. Here is some HTML
taken from an application which will call refresh the contents of another HTML iFrame, which runs another stored
process to update it.

 data _null_ ;
 file _webout ;
 put '</head>';
 put '<body' ;
 put " var x =
window.parent.document.frames.main.location.href.in dexOf('cookie_save') ; if (x==-
1) " ;
 put " { window.parent.document.frames.main.loca tion.reload() ; } ;" ;;
 put '" class="panel">' ;
 run ;

Get vs. Post method
HTML forms use one of two methods to pass parameters: get or post. I usually use the get method, since when the
next page has been loaded you can see the entire URL in the address bar or properties, whereas if you use post then
you cant see any of the parameters. When using an HTML form with a lot of parameters you may encounter a limit at
which the get method can no longer pass parameters since it has a limit of 2083 characters. I encountered this when
I wrote a stored process to build filters. After adding about 10 lines of filters it all stopped working. I eventually
discovered that this was because I had hit the limit, and so parameters were just being truncated which produced
unpredictable results. By switching to the post method the problem instantly went away.

What happens when you pass many parameters of the s ame name?
With the web application if you pass in a single parameter, then it becomes available to the stored process as a
macro variable of the same name. e.g. “&name=phil” on the URL is equivalent to “%let name=phil ;”. However if you
pass two or more parameters in of the same name, then you get a series of macro variables created. One has a
suffix of 0, and provides a count of how many parameters there are. Then the first one has a suffix of 1, the second a
suffix of 2, and so on. For instance, “&name=phil&name=mike” is equivalent to “%let name0=2 ; %let name1=phil ;
%let name2=mike ;”. The following macro takes a list of HTML parameters and puts them into a macro variable where
they can be used with the in operator and a where clause.

%macro html_parms_to_list(
 in,
 out,
 default=_:, /* optional va lue to use as a default */
 sep=%str(), /* optional on e character separator */
 quote=0, /* 1=quote val ues, 0=dont quote values */
 partstmt=0 /* 1=make part of where statement, 0=dont */
) ;

Beyond the BasicsSAS Global Forum 2009

6

 %global &out ;
 %let &out= ;
 %if "e %then
 %let _q_=%str(%') ;
 %else
 %let _q_= ;
 %if %symexist(&in.0) %then
 %do ;
 %do j=1 %to &&&in.0 ;
 %let &out=&&&out..&sep.%superq(_q_)&&&in.&j %superq(_q_) ;
 %end ;
 %end ;
 %else
 %if %symexist(&in) %then
 %let &out=%superq(_q_)&&&in%superq(_q_) ;
 %else
 %let &out=%superq(_q_)&default%superq(_q_) ;
 %if %symexist(&in.0) %then
 %let &out=%qsubstr(%superq(&out),2) ;
 %if &partstmt=1 %then
 %do ;
 %if %symexist(&in) %then
 %do ;
 %if %superq(&in)=_ALL_ %then
 %let &out= ;
 %else
 %let &out=and &in in (%superq(&out)) ;
 %end ;
 %else
 %let &out=and &in in (%superq(&out)) ;
 %end ;
%mend html_parms_to_list ;

Persistence
When I started developing web applications I looked at ways that I could have persistence of data, since I needed to
be able to make some choices in one stored process and then use those choices in another (for example). I found
that there were a range of ways that could be used to achieve this:

1. Passing parameters on URL
When building up a URL to call a stored process using the web application, you can add more and more
parameters onto the URL to pass information from the current stored process to the next. If you build a
form in the HTML to call the stored process, then you can have hidden values on it which will then pass
those values to the next stored process.

2. Sessions
This is a method provided by SAS in order to pass parameters on from one stored process to another. The
idea is that you put name all macro variables you want to save starting with “SAVE_”, and you put all
datasets to save into a libref of SAVE. You then use the function stpsrv_session to create a session. You get
two macro variables that identify this session and must be used to make use of the session in another stored
process. One major drawback to all this is that a saved session must be used on the same stored process
server that it was saved on – this can have performance implications. We find that sometimes a stored
process server will hang, and that would mean the saved session would be inaccessible.

3. Cookies
One problem with using cookies is that you cant directly read or write a cookie from SAS. So you end up
having to manipulate JavaScript which does the reading and writing for you. Then you have to get that
information into SAS. Another problem is that a cookie is limited to 4096 bytes. This became a problem
when I allowed users to build filters that returned lists of thousands of items which I then wanted to pass to
other stored processes. I then had to split my data into chunks of less than 4096 bytes and stored in a series
of cookies, which added more complexity. The final problem I found was that cookies just did not always
work 100% of the time (using Internet Explorer 6). There were some cases when strange things would
happen, yet my code looked OK – and it would work in a different web browser. This unreliability

Beyond the BasicsSAS Global Forum 2009

7

ultimately made me look at alternatives.
4. Saving data to files/datasets

I found this method to be the most reliable. I can write information to a dataset and then load it back in
when I want it. A couple of key points that make this possible is that I save each users parameters in a
different SAS dataset named as their userid. i.e. if the userid was U1234 then the dataset is called U123.
This eliminates problems of file locking if I used a single dataset for writing everyones parameters to.
Where I do have parameters that I want to share between people I do write them all to a single dataset, but I
have implemented a locking macro since otherwise I would get locking errors.
The following macro has proved to be incredibly useful since it will get a lock on a dataset so that an
update to a shared dataset can be made, and then the lock can be released for others to use it. Additionally it
will keep trying to get the lock every .01 seconds for up to a minute. Calling it with _type=unlock, will
release the lock.

%macro locksave(_type=lock,
 _member=,
 _timeout=60,
 _retry=0.01);

 %if &_type=lock %then %do;
 %* set start time;
 %local _starttime;
 %let _starttime=%sysfunc(datetime());
 %* try locking until lock is obtained or unti l timeout is exceeded;
 %do %until(&syslckrc=0 or
 %sysevalf(%sysfunc(datetime())>(&_ starttime + &_timeout)));
 options noerrorabend;
 lock &_member;
 options errorabend;
 %* pause before retrying;
 %let sleep=sleep(&_retry.,1);
 %end;
 %end;
 %else %do;
 %* release lock;
 lock &_member clear;
 %end;
%mend;

STORED PROCESSES

Stored Processes were introduced in SAS 9 and are similar to a SAS macro, except they have some extra
information attached. There are 2 parts to a stored process:

1. The SAS code, which is run when the stored process is executed

2. The metadata for the stored process which holds information about the following:

i) Which server it will run on, which can be either a stored process server or workspace server.

ii) Which users are allowed to run it, as well as which users can change the metadata for the stored
process.

iii) What parameters can be used, including any ranges, required parameters and default values.

When a stored process is run, it is actually run on behalf of a user by a special user id. If you have configured SAS in
the recommended way then Stored Processes will usually be run under the SASSRV user-id. So if a user called PHIL
tried to run a stored process, it would check whether that user was allowed to run that stored process and if so it
would be run on the requested server (probably a stored process server) using the SASSRV user-id. This is an
important fact to be aware of when designing applications particularly for UNIX systems which are very fussy about
permissions.

Beyond the BasicsSAS Global Forum 2009

8

CREATING STORED PROCESSES

When creating a stored process it is often easiest to use Enterprise Guide, since you can use wizards to create code
or write your own, test it out and then save the code as a stored process. A wizard will guide you through the process
and allow you to specify everything in an easy way.

Another way is to create the metadata for the stored process using the SAS Management Console. This allows
everything to be specified, including where the source code is located. You then need to write the source code for the
stored process separately and ensure that it is in place when you try to use the stored process. If doing this, then
there are a few things you will need to know about the structure of stored processes.

The SAS code for a stored process can be as simple as a normal everyday SAS program. For instance I could have
a data step and a proc print in a file called test.sas, and that would be all that was required. In my stored process
metadata I would need to point to that code so that when the stored process was run it would load that SAS code in
and execute it. However by making use of 3 other lines of code you can get a lot more power out of a stored process.

*ProcessBody;
This comment should be placed at the start of a stored process since it will initiate input parameter processing, if
there are any input parameters – otherwise it does nothing. Whatever input parameters are passed to the stored
process, including any defaults, are inserted in the code at this point when it runs. So if you pass a value in for a
parameter called MONTH as FEB, then it is just like having the statement “%let MONTH=FEB” in your code at that
point. So you will get a global macro variable defined for every stored process parameter. If you don’t include
“*ProcessBody;” then values for parameters will be available.

%stpbegin;
This macro initializes the Output Delivery System for use from a stored process. By setting various macro variables
you can affect what this macro does. For example, by setting the _ODSDEST macro to RTF will cause the macro to
produce RTF output.

%stpend;
This macro finalizes the ODS output. For example if we had been writing HTML, it would write the final HTML tags
such as </body> and </html>.

Of these 3 things, %stpbegin is the most complex to understand since it can make use of about 40 reserved macro
variables to control what it does. Some of the more useful of these and ways to use them will be explained later.

Macro variables used with %stpbegin
Some of the following macro variables will be populated by the web application and you can look at the value to use it
in your stored process (e.g. _metauser). Other values can be set by you prior to %stpbegin being called, and then the
stpbegin macro will make use of the values you set.

_ACTION – an action for Web application to take (form, execute, properties, background, strip, index, data)

FORM - displays custom input form if one exists.

EXECUTE - executes the stored process.

PROPERTIES - displays the property page, which enables you to set input parameters and execution options and to
execute the stored process. This is really useful and flexible when you want to run an unfamiliar stored process

BACKGROUND - executes the stored process in the background. Useful if your stored process runs for a long time,
especially since browsers will usually timeout after about 3-5 minutes and if your stored process runs longer then you
can lose track of it.

STRIP - removes null parameters, used in combination with EXECUTE and BACKGROUND.

INDEX - displays a tree of all stored processes. This is very useful if you just want to browse all the stored processes
that are defined and then select which one you want to run.

DATA - displays a summary of general stored process data.

You can combine parameters as follows, e.g.

_ACTION=FORM,PROPERTIES … displays a custom input form if one exists, otherwise displays the property page.

_ACTION=FORM,EXECUTE … displays a custom input form if one exists, otherwise executes the stored process.
_DEBUG – debugging flags. These have a range of possible values:

Log – shows the SAS log after the stored process runs

Beyond the BasicsSAS Global Forum 2009

9

Time – shows the real time taken by the stored process at the end

You can combine several _debug flags with commas like this: “_debug=log,time”. You can also use SAS/Intrnet style
numbers to specify these flags. My favorite is using “_debug=2179”. This is a decimal converted from a binary, in
which I set bits for various _debug options I want.

_GOPT_DEVICE – set the goption device parameter. I usually use sasemf for this, although other popular choices
are java, activex and png. One nice thing about using sasemf on UNIX is that true type fonts are more easily used
from it.

_GOPT_HSIZE – set the goption hsize parameter. Useful if you want to specify the horizontal graph size precisely.

_GOPT_VSIZE – set the goption vsize parameter. Useful for specifying the vertical graph size.

_GOPT_XPIXELS – set the goption xpixels parameter. I usually query my browser to work out the width, allow for
any other things taking up space on the screen, and then set the width appropriately. I need to adjust this when I
change destinations though, since producing a graph for an RTF document is best done by customizing its size for
the page.

_GOPT_YPIXELS – set the goption ypixels parameter. In addition to the comments for _GOPT_XPIXELS, I use this
parameter when I have lots of items I want to put on my y-axis. I can make the graph very long and then display them
all clearly as the user scrolls the HTML page down.

_GOPTIONS – set some SAS/Graph options.

_METAPERSON – shows the real name of the person associated with the userid in the metadata. Will be unknown if
there is no association.
_METAUSER – shows userid that was used to connect to metadata server.
_ODSDEST – Specifies the ODS destination (default is HTML). Can also be one of (CSV, CSVALL,
TAGSETS.CSVBYLINE, HTML, LATEX, NONE (which produces no ODS output), PDF, PS, RTF, SASREPORT,
WML, XML or any other tagset destination.
_ODSOPTIONS – specifies options that are added to the end of the ODS statement. One key use of this is if you
want titles and/or footnotes to be included in graphs, since NOGTITLE and NOGFOOTNOTE are default options. You
can override them by specifying GTITLE and/or GFOOTNOTE in _ODSOPTIONS.

_ODSSTYLE – sets ODS STYLE= option.
_ODSSTYLESHEET - Sets the ODS STYLEHEET= option.
_PROGRAM - Name of the stored process. This is really useful if you want to build up a link from the current stored
process to itself, since this gives you the name of the stored process.

_RESULT – Specifies what kind of final result is produced by the stored process. It can be one of the following:

STATUS – produces no output to client.

STREAM - output is streamed to client through the _WEBOUT fileref.

STREAMFRAGMENT – just like stream but kind of a cut down version. This is not documented but I find it really
useful for producing HTML when I want to have more control over my HTML.

PACKAGE_TO_ARCHIVE - package is published to an archive file.

PACKAGE_TO_REQUESTER - package is returned to the client. The package can also be published to an archive
file in this case.

PACKAGE_TO_WEBDAV - package is published to a WebDAV server.

PACKAGE_TO_EMAIL - package published to one or more e-mail addresses.

PACKAGE_TO_QUEUE - package published to a message queue.

PACKAGE_TO_SUBSCRIBERS - package published to a subscriber channel.

_SRVNAME – the host name of the server. This is very useful when you want to write stored processes that can build
URLs for links

_SRVPORT – the port number on which this request was received. Also useful in building up a URL for links.
_STPERROR - Global error variable, 0 if everything worked properly, otherwise non-zero.

Beyond the BasicsSAS Global Forum 2009

10

_URL - Specifies the URL of the Web server middle tier used to access the stored process. Also useful in building up
a URL to use with links.
_USERNAME - the user name obtained from Web client authentication.

EXTENDING THE USEFULNESS OF METADATA/SECURITY

In SAS 9 we have metadata available – metadata is data about data. SAS Metadata tells us about the SAS 9
Business Intelligence environment such as Stored Processes, Servers, Users, etc. For example when a user runs a
stored process through the SAS Stored Process Web Application they specify a userid and password. The userid is
looked up in the metadata and a check done that they are allowed to run that stored process. If they can, then
metadata is used to retrieve the SAS code to run and to determine what server to run it on. If the server hasn’t started
running, then metadata is used to start the server. When results are produced metadata determines what is done with
them. This is only part of what goes on automatically behind the scenes when running a stored process in a web
browser.

There is much more that you can do with your metadata though. SAS provides some tools for interacting with
metadata. There are several functions that can be used from the data step. There is a procedure called Proc
Metadata in which you specify XML to tell it what you want to do with the metadata. There is also Management
Console that allows you to interactively use the Metadata.

A colleague of mine2 developed an incredibly useful macro which we use to determine what groups a user is a
member of in the SAS metadata. We can feed it a userid and get back a list of the groups. That means that in
management console we can define groups for particular functionality (e.g. the 123 group get to see data from Study
123). We then assign users as members of groups. Then in a stored process we can look up the user to see what
functionality we should make available to them. So when a stored process runs that produces a list of studies from
which they can choose data, we will only show those studies which they are supposed to see the data.

You can use the following macro as follows: “%meta_person(person=Philip Mason)”. You then get a collection of
other macros that will list things defined in the metadata for that person. So you can work out what things they should
be able to see and then only show those things.

%macro meta_person(person=);

 %** input parameters *************************** ***************************;
 %** person : name of person to get memberships for as stored in **;
 %** metadata **;
 %*** ***************************;

 %* create empty global macro variables;
 %global _meta_person_uri _meta_person_name _meta _group_names _meta_group_uris
_meta_group_num;
 %let _meta_person_uri=;
 %let _meta_person_name=;
 %let _meta_group_num=;
 %let _meta_group_names=;
 %let _meta_group_uris=;

 %if %index(%superq(_srvname),mysassystem)>0 %the n
 %do ;
 %let server=%scan(&_srvname,1,.).%scan(&_srv name,2,.) ;
 %let pwd={sas001}eDJ0OTJ2MGFz;
 %end ;

 %* set metadata server options;
 options metaserver="&server"
 metaport=8561
 metaprotocol=bridge
 metauser="sas"
 metapass="&pwd"
 metarepository="Foundation";

2 Edwin Van Stein of Astellas, Netherlands.

Beyond the BasicsSAS Global Forum 2009

11

 %* get URI for person in metadata;
 data _null_;
 length id type $256;
 type='Person';
 id='';
 rc=metadata_resolve("omsobj:Person?@Name='&pe rson.'", type, id);
 %* create macro variables if person is found;
 if rc gt 0 then do;
 call symput('_meta_person_uri',strip(id));
 call symput('_meta_person_name',strip("&pe rson"));
 end;
 run;

 %* if URI for person is found get group membersh ips;
 %if &_meta_person_uri ne %then %do;

 %* set temporary filename;
 filename out temp ;

 %* get group memberships for person;
 proc metadata server="&server"
 port=8561
 userid="sas"
 password="&pwd"
 in="<GetMetadata><Metadata><Per son
id='&_meta_person_uri'/></Metadata><NS>SAS</NS><Fla gs>1</Flags><Options/></GetMetad
ata>"
 out=out ;
 run;

 %* get groups person is member of from output of proc metadata;
 data work._groups (keep=id name);
 infile out lrecl=32767;
 input;
 %* read in proc metadata output;
 line=_infile_;
 %* get number of groups person is member o f;
 numgroups=count(line,'<IdentityGroup ','i');
 call symput('_meta_group_num',strip(put(nu mgroups,8.)));
 do i=1 to numgroups;
 %* go to beginning of identity group;
 line=substr(line,index(line,'<IdentityG roup '));
 %* the URI of the group is the second w ord;
 id=scan(line,2,'"');
 %* the name of the group is the fourth word;
 name=scan(line,4,'"');
 output;
 %* go to end of identity group;
 line=substr(line,index(line,'/>')+2);
 end;
 run;

 %* create macro variables with URIs and names of groups;
 proc sql noprint;
 select name , id into :_meta_group_names s eparated by '#' ,
:_meta_group_uris separated by '#'
 from work._groups;
 quit;

 %* clean up;
 proc datasets lib = work nolist;
 delete _groups;
 run;

Beyond the BasicsSAS Global Forum 2009

12

 quit;

 %end;

 %* if no person found write message to log;
 %else %do;
 %put INFO: &person was not found in the metad ata;
 %end;

 %* write values for create macro variables to lo g;
 %put INFO: _meta_person_name = &_meta_person_nam e;
 %put INFO: _meta_person_uri = &_meta_person_uri;
 %put INFO: _meta_group_num = &_meta_group_num;
 %put INFO: _meta_group_names = &_meta_group_name s;
 %put INFO: _meta_group_uris = &_meta_group_uris;

%mend meta_person;

POTENTIAL PROBLEMS & SOLUTIONS

TABLES WITH FIXED HEADERS

One major problem I have found when developing web applications with SAS is that the tables produced by ODS
HTML don’t fix the row and column headers. That means that if you have a very wide table and scroll to the right,
then you no longer can see the row headers on the left. If your table is very long then as you scroll down you will lose
the column headers and so can’t tell what the columns are for. SAS have provided a few solutions to this problem
which can be found in the SAS usage notes.3

The first solution is to use a tagset provided by SAS which actually fixes the row and column headers. This tagset
also does some other nice things, like allowing you to sort based on values in columns. I have found that this works
well on small tables but once they get large it slows down a great deal and becomes almost unusable.

The next solution is to effectively insert some JavaScript into the HTML table which fixes the position of the row
headers and column headers relative to the web page. This works, but the headers appear to jerk about as you scroll
– which is not very pretty.

I haven’t found an ideal solution yet. I plan to experiment with some tables provided with JavaScript frameworks, and
perhaps to look at embedding an EXCEL table into a web page.

PROBLEMS YOU MIGHT HIT DURING DEVELOPMENT

Handling different browsers
Different browsers behave in different ways and you can detect which browser you have and make allowances in
your code. During development of my latest web application I tried to support a range of browsers, but discovered
odd little differences between them in various areas. Something that worked in one browser would sometimes not
work in another one – and to fix it in the other one would require some special work around coding. In the end I
decided to only support the company standard web browser, which was Internet Explorer 6, and that made life
somewhat easier.

You can see the browser compatibility tables4 which show which browsers support the official web standards. It is
interesting to note that no browser supports all the standards.

Large graphs fail to be produced
We ran into some problems when trying to produce very large and complex graphs. Even though we had set the
memsize option in SAS to allow 512meg of memory, we found that some graphs were running out of memory at a
much lower level. I had decided to take advantage of the web page delivery by making some graphs very detailed
and long, so that you would scroll down the web page to see them all. Anyway, after some investigation I discovered
the maxmemqry SAS option, which sets the maximum amount of memory that a single SAS procedure can use. This
had to be increased so I could produce my extra large and long graphs – then all was well.

3 Usage Note 24066: In ODS HTML, how can I freeze my table headers while I scroll the page?
4 http://www.quirksmode.org/dom/compatibility.html

Beyond the BasicsSAS Global Forum 2009

13

Axis labels become too small
Early in development we were looking at a single clinical study, which didn’t produce particularly large graphs. But
eventually we developed graphs that were comparing many treatments between many different studies. This meant
that I ideally want to fit a lot more onto my graph. Producing a horizontal bar chart with 60 items being compared
resulted in tiny almost unreadable axis labels. But then it occurred to me that I was using a web browser in which I
had a limited width, but an unlimited length. As long as people didn’t have to scroll side-to-side, they would probably
be happy scrolling down to see more details on a graph. So I set the graph ypixels to be very large and the x pixels to
match the width of my screen (to allow for different resolutions). This let me make long graphs. To get the size of my
screen (which may differ from user to user) I just used a simple bit of JavaScript which I then delivered to my stored
process as a macro variable.

I put the following macro in reports where I am creating graphs. A lot of my graphs were not appearing properly on
low res screens, so I adjust the resolution for that. Also, when I change the _odsdest to send the graph to RTF then I
adjust the resolution so that the graph comes out making full use of the page in RTF.

%macro handle_low_res ;
 %* handle low resolution screen ;
 %if &_gopt_xpixels<450 %then
 goptions xpixels=650 ypixels=425 ;
 %else
 %if &_gopt_xpixels<800 %then
 goptions xpixels=875 ypixels=850 ;
 ;
 %* A4 sized graphs for RTF destination ;
/*A4 in Pixels - 300 dpi (print) = 2480 X 3508 pixe ls */
/*A4 in Pixels - 200 dpi (default for ODS RTF) = 8 .3 x 11.7 inches = 1660 X 2340
pixels */
 %* PA4 is largest paper format that can fit on bot h A4 and US Letter without
resizing
 it is 210mm x 280mm, 8.26771654in x 11.023622, 1653pixels x 2204pixels (RTF),
ratio of 3:4 - which matches traditional TV screen ;
 %if %upcase(&_odsdest)=RTF %then
 %do ;
 goptions xpixels=1900 ypixels=1425 ;
 options orientation=landscape papersize=("280 mm","210mm") ;
 %end ;
%mend handle_low_res ;

Making graphs look good on UNIX, while still being produced fast
When developing an application for the web you have to consider various factors. Response time is one important
one. People ideally want to see pretty and detailed graphics, but also want their graphics to arrive quickly. The
slowest part of producing a graph and delivering it to a web browser is usually the network speed – and so the size of
the graph is a major factor. So it becomes a balancing act of weighing up the size of the graphic against the speed it
takes to download.

So, select a device driver that produces high quality, yet small file sizes.

Another factor with selection of device driver is the support for fonts. Some device drivers support true type fonts,
which usually look by far the best and lift the whole appearance of your graph. Other device drivers don’t support true
type fonts and so you are reduced to using SAS software fonts, which often don’t produce very nice looking graphs.

So, select a device driver that can use true type fonts.

Getting True-type fonts to work in graphs
When I initially began to produce graphs on UNIX (Solaris and AIX) I began to ran into problems with the use of fonts.
If you use a SAS software font such as swiss, then that will work in all graphic devices (PNG, JPEG, BMP, TIFF,
etc.). However if you want your graphs to look really good and use true-type fonts then you find that they just don’t
work automatically in most devices. In fact they are not supported at all in most devices, but you can get them to work
in certain ones. For instance you can define particular fonts to work with the PNG device, and I have done this but it
is a little annoying. However if you use the SASEMF driver then any true-type fonts available on UNIX can be
automatically used. At least this is true after they are imported into SAS. You must use Proc fontreg to import
whichever fonts you want to use:

proc fontreg ;
 fontfile "/sas/general/fonts/arial.ttf" ;

Beyond the BasicsSAS Global Forum 2009

14

run;
You can also just import all the fonts in a directory and then use any of them – which is a bit less efficient if you have
lots of fonts.

proc fontreg ;
 fontpath "/sas/general/fonts" ;
run;

CONCLUSION

This paper attempts to give some insight into a very large topic – web development using SAS. It is not only a large
topic, but a fast evolving one. That means that by the time you read this, it may not be totally up to date. I hope it has
given you some insight into what can be done and how. To the uninitiated it may seem that SAS is not the best tool to
develop a web application. In fact I have run into experienced java developers who have refused to believe this until
the evidence was collected and beat over their heads – but we had java developers come to love SAS.

The key to the power of SAS as a web application enabler is the Stored Process web application. Start with that and
you can’t go wrong.

REFERENCES

There are some very useful sections in the documentation on the SAS web site.

Creating Stored Processes - http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/program.html

Building a Web Application - http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/webapp.html

RECOMMENDED READING

Visual Quickstart Guide: CSS, DHTML & AJAX, by Cranford & Teague

Visual Quickstart Guide: HTML, XHTML & CSS, by Castro

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Philip Mason
Enterprise: Wood Street Consultants Limited
Address: 16 Wood Street
City, State ZIP: Wallingford, Oxfordshire, OX10 0AY, England
E-mail: phil@woodstreet.org.uk
Web: www.woodstreet.org.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Beyond the BasicsSAS Global Forum 2009

	2009 Table of Contents

